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Abstract: 
Determination of the solid-liquid phase transition point of a molecular substance 

requires calculation of the free energy in both phases.  Progress has been made on this 
problem by modeling molecules as fused hard spheres and adding attraction and electric 
multipole moments perturbatively.  The solid free energy of hard heteronuclear dumbbells 
of bond length L*, used to model diatomic molecules, can in principle be calculated exactly 
via the Frenkel-Ladd method, but this is computationally intensive.  Use of Lennard Jones-
Devonshire fixed cells to calculate free energy is much simpler computationally but is an 
approximation.  The fluctuating cell model is investigated as an alternate intermediate 
method which is still computationally simpler than Frenkel-Ladd.  As was found earlier in 
two dimensions, for small L* the simple cell model is in better agreement with Frenkel-
Ladd than the fluctuating cell model, but for larger L* the fluctuating cell model is in better 
agreement.  The probability distributions of free volumes are also analyzed and show 
different functional behavior for near-zero bond length and appreciable bond length. 

 
Introduction:   

The determination of the solid-liquid phase transition is of considerable current 
interest.  Monson et al. have reviewed various methods available for solid-liquid 
equilibrium calculations [1].  These methods detail the calculation of the free energy in 
both the solid and liquid phases as this is required to determine the phase transition.  Some 
models ignore intermolecular forces focusing on hard infinitely repulsive forces 
characterized solely by the molecule’s shape and size.  One question these models try to 
answer is how much physics can be realized by considering only the molecular form.  The 
hard sphere model, for example, helps reveal the basic physics involved in the freezing of 
inert gasses.  Hard heteronuclear dumbbell models have helped explain the freezing of 
methyl chloride [2].  Hard chain molecules have provided insight into the freezing of 
n-alkanes [3].  These hard models can serve as the foundation to interactions that are more 
complicated.  Such interactions as dipole moments and Van der Waals attraction can be 
added perturbatively. 

There are a number of methods for calculating the free energy of these hard models.  
In theory, thermodynamic integration can generate exact free energies.  This method, 
however, is limited by long computation times.  The simple cell method of Lennard-Jones 
and Devonshire approximates the free energy through calculation of the free volume 
available to a single particle in a cage (or cell) of nearby particles each fixed to its 
respective lattice site [1].  This method leads to a first order approximation of the free 
energy.  The free volume is defined by  

 
1( , ,..., )QU r r r

f

cell

v dre β−= ∫
� � ��

 (1) 

where Q is the number of nearest neighbors that form the cell.  In the case of hard 
interactions, the Boltzman factor reduces simply to zero at the edge of the cell and 
evaluates to one within the cell’s boundary walls.  The reduced free energy can then be 

approximated by ( )ln / D
ff v l≈ −  where l is an arbitrary length scale and D is the 

dimensionality of the system. 
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A natural extension of the simple cell method makes use of an equilibrated system of 
hard particles in the solid state.  This fluctuating cell theory requires calculating and then 
averaging the free volume fv  of many particles of the system.  The reduced free energy is 

then calculated as ln / D
ff v l≈ − .  It should be noted that the work of Hoover et al. [4] 

included an alternate expression for the free energy, ( )ln / D
alt ff v l≈ − .  However, the 

former expression was determined to better approximate the free energy. 
A two-dimensional system of hard dumbbells was studied by Gay et al. [5].  Their 

work indicates that the fluctuating cell theory produces good free energy approximations 
for this system.  At near zero L* the simple cell method actually performs better, but as the 
bond length is increased, the fluctuating cell theory outperforms the simple cell.  They also 
determined that the functional form of the free volume distribution is markedly different 
for a system of near zero L* dumbbells and those of larger L*.  The small bond length 
systems have free volume distributions that peak at 0fv =  while the elongated dumbbells 

have free volume distributions that peak at some non zero value.   
One of us (J. C. R.) found an analytic solution to calculate the free volume of a three-

dimensional system of hard spheres [6].  This solution was developed independently and 
concurrently with an analytic solution found by Sastry et al. [7].  The forms of the two 
solutions are quite different but they produce identical free volumes. 

In a collaboration between M. Lusk and one of us (P. D. B.) to calculate the 
interfacial free energy of grain boundaries of steric assemblies of elastic disks, the 
fluctuation cell model proved beneficial [8].  Unlike other methods, it did not require an 
attractive potential and could be applied to a static snapshot of an equilibrated system.  The 
free energy calculation required calibration with the simple cell method on a 
homonogenous system of disks. 

 
Method: 

A Monte Carlo simulation was performed on a system of three-dimensional hard 
homonuclear dumbbells (figure 1) in the NVT ensemble.  The system was initiated in the 
CP1 solid phase with the number of particles being 6x6x4 in each of the three lattice 
directions.  The correct number density was imposed by scaling the lattice vectors of the 
close packed CP1 solid.  Periodic boundary conditions were employed.  Once equilibrated, 
the free volume of each particle was calculated.  Free energies were derived from the 
average of the free volume. 
 
CP1 crystal details: 

The CP1 crystal structure was first introduced by Vega et al. [9]; however, written 
details of the structure are lacking.  An intuitive means for visualizing the close packed 
CP1 structure is as follows:  1) Label the two spheres A and B of each dumbbell.  2) Orient 
all particles in the same direction.  3) Make a close packed triangular lattice of mxn 
particles out of sphere A of the dumbbells.  This defines the 1a

�
 and 2a

�
 lattice vectors.  

4) Rotate all particles about the center of sphere A such that sphere B of each dumbbell 
touches sphere A of two of the dumbbells below.  Rotate all the dumbbells this way such 
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that they are all oriented in the same direction.  All the B spheres now make a triangular 
close packed lattice.  5) Take another mxn dumbbells and place a triangular lattice of the A 
spheres on top of the B spheres of the lower lattice such that each A sphere touches three B 
sphere’s and each B sphere touches three A spheres (except for edge dumbbells).  6) Orient 
the new dumbbells in the same direction as those below.  The 3a

�
 lattice vector can be 

defined from the geometrical center of one of the lower dumbbells to the geometrical 
center of the upper adjacent dumbbell that is farthest away.  Repeat steps 5 and 6 to build 
the solid.  The alternations in sphere placement should be constructed such that as L* is 
reduced to zero, the solid would become an FCC close packed hard sphere system with the 
usual XYZXYZ sequence of planer triangular lattices.  For this simulation, the solid was 
built only in the positive lattice vector directions measured from an arbitrary origin. 

The bond length L*=L�  defines the orientation of the dumbbells in the CP1 crystal 
where �is the diameter of one of the spheres of the hard dumbbell (Figure 1).  Throughout 
the rest of this discussion, all lengths will be reduced by .  The angle between 3a

�
 and the 

normal to the plane of 1a
�

 and 2a
�

 is 1 *sin ( / 3)Lψ −= .  Defining a* as the magnitude of the 

1a
�

 and 2a
�

 lattice vectors, a*= 1a
�

/ � 2a
�

/ , gives the magnitude of 3a
�

 as 

* * *2 * *2
3 3 / 3 5 2 2 3 / 3a a Ra L L Lσ= = + + −�

 where  

 
( )

3 1

3 1 cp

a a
R

a a
=  (2) 

where ( )3 1 cp
a a  is the close packed ratio.  An arbitrary density can be imposed by scaling 

the 1a
�

 and 2a
�

 lattice vectors of the close packed system by a* and by scaling the close 

packed 3a
�

 lattice vector by Ra*.  The relation between the nearest neighbor distance and 

density, * 3 3 /d Nd Vρ ρ= =  is as follows:    

 ( )

1
3

* *3
* *

* * *2

2 3
( , , )

2 3

L L
a L R

R L L
ρ

ρ

 
+ − =  + −  

 (3) 

 
Here, d is the diameter of a sphere with the same volume as the dumbbell,  

 

1
*3 3

*3
1

2 2

d L
L

σ
 

= + − 
 

 (4) 

It should be noted here that the expression for the close packed density as reported by Vega 
et al. [9] is in form quite different then the expression found for this paper.  The close 
packed density used here is 

  
* *3

*

* *2

2 3

2 3
cp

L L

L L
ρ + −=

+ −
 (5) 

The form used by Vega et al. is much more complicated;  however, computationally these 
two forms are equivalent.  They produce identical close packed densities 
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Figure 1.  A single hard dumbbell with bond length, L. 

 
In the simulation, cell lists were employed to limit the number of distance 

calculations required when determining particle overlap.  It is important to ensure that the 
cells are not too small.  If they are, two particles may overlap that are not in neighboring 
cells.  The largest distance between two overlapping dumbbells is L*+1.  This must be the 
minimum distance between two parallel walls of the cell.  The edges of the cells were 
along lattice vectors:  1e  along 1a

�
, 2e  along 2a

�
, etc.  The minimum lengths of these edges 

1 2 3, , ande e e  were determined: 

 
( )

( )
*2 *4 * *2 *

1 2
* *2

9 14 3 8 2 3 1

3 2 3

L L L L L
e e

L L

+ − + − +
= =

+ −
 (6) 

 
( )*2 * *2 *

3 * *2

3 5 2 2 3 1

2 3

L L L L
e

L L

+ + − +
=

+ −
 (7) 

Space was divided into an integral number of cells in each of the three lattice vector 
directions such that each cell had the smallest edge lengths possible. 
 
Trial Moves: 

The Monte Carlo simulation required trial translational and orientation moves.  The 
orientation of each dumbbell was tracked by a unit vector ( ˆ , 1,..,iv i N= ) connecting the 

centers of the spheres of the dumbbell.  5000 Monte Carlo steps were used to equilibrate 
the system, and 20 independent systems were generated for each free energy calculation.  
The translational and orientation step sizes were adjusted to allow for a roughly 50% 
acceptance rate of each trial move. 

Translations were performed by randomly choosing a displacement along each of the 
lattice vector directions.  In addition, positions of each particle were tracked in the lattice 
vector coordinate system.  Before any distance calculations were performed, displacement 
vectors were transformed to a Cartesian coordinate system.  The x-axis was aligned along 

1a
�

, and the xy plane was positioned in the 1a
�

2a
�

 plane.  In Cartesian coordinates  

 [ ]* *
1 1,0,0a a=�

, * *
2

1 3
, ,0

2 2
a a

 
=  

 

�
,  (8),(9)  

 and ( )* * *2 *2 * *2
3

1 1 1
(1 ), (1 ), 2 3

2 2 3 3
a Ra L L L L

 = + + + −  
�

. (10) 
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The transformation matrix is 

 

*2

*2 * *2

*2

*2 * *2

* *2

*2 * *2

3(1 )
1 1/ 2

2 3 5 2 2 3

(1 )
0 3 / 2

2 3 5 2 2 3

2 3
0 0

3 5 2 2 3

CC LVC

L

L L L

L
r r

L L L

L L

L L L

 + 
 + + − 
 +=  
 + + −
 
 + −
 

+ + −  

� �
, (11) 

where CCr
�

 is the position vector in Cartesian coordinates, and  

 1 2 3ˆ ˆ ˆLVC

g

r ga ha ja h

j

 
 = + + = 
  

�
 (12) 

is the position vector in the lattice vector coordinate system.  Note that all direction vectors 
are unit vectors. 

 Orientation trial moves were generated by picking a random unit 3-vector, t̂ .  This 
vector was then shrunk by an amount, �and added to the original orientation vector, ˆiu .  

The new orientation vector was then normalized and given by  

 ’
ˆˆ

ˆ
ˆˆ

i
i

i

u t
u

u t

ω
ω

+=
+

.   (13) 

 
Free Energy Calculation: 
 Upon equilibration, the free volume of each particle was calculated via Monte Carlo 
integration.  One dumbbell was selected and wandered randomly to determine the 
maximum box volume, bV  within which to sample points.  The minimum and maximum 

coordinates in all three of the lattice vector directions were recorded ( ,i minb , ,i maxb , i=1,2,3).  

Random orientations were chosen when the dumbbell hit another particle to determine if 
the range of motion could be extended by extreme variation in the orientation.  After the 
edges of the integration space were determined, each edge ( , ,i max i minb b− ) was increased by 

10% about its center just to ensure that the entire free volume was contained within the 
box.  When a large enough number of random walk steps are performed, the free volume 
becomes independent of the number of steps taken. 

After the sample space was determined, a Monte Carlo integration was performed 
over three translational and two angular dimensions.  The angular integration was 
performed by picking random unit vectors to specify the dumbbell’s orientation.  The 
number of accepted positions, NA was tracked out of the total number of trial positions, NT. 

A free volume was calculated as * *
, , 1,...,A

f i b
T

N
v V i N

N
= =  where  
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* *2 3

* * *
, ,

*2 * *2 1

6 3 3
( )

2 3 5 2 2 3
B i max i min

i

L L
V b b

L L L =

+ −= −
+ + −

∏ . (14) 

 The free volume of each particle was calculated in this manner.  The free energy 

was approximated by ( )* *
,ln f i

B

F
f v

Nk T
= −Π = −  where Π  is the kinetic part of the free 

energy 

( ) 2

1

2 3 2 2 2
2 , , ,

1 16
1 0 1

81
ln ... ... exp

2 2

N
i

i

N p
N

m x i y i z i
N NN

i

L L L
dp dp e dL dL

N h I I

βπ σ
β=

−

=

  ∑  + Π = − − +         
∑∫ ∫

�

� �� �
, (15) 

where I1 is the moment of inertia about the axis connecting the spheres of the dumbbell, 
and I0 is the moment of inertia about the two axis perpendicular to this.   
 
Results 

Table 1 shows the results of the Vega et al. using the Frenkel-Ladd method.  They 
are compared to the fluctuating cell and simple cell results.  This table shows that at low 
values of L* the simple cell method does a better job at approximating the free energy.  
According to these results, if * 0.6L ≥ then the fluctuating cell method approximates the 
free energy better.  Note that the fluctuating cell method always produces free energies that 
are higher than those computed via thermodynamic integration.  Conversely, the simple 
cell method always underestimates the free energy. 

L* R 
*ρ  

f* [9] 
(Vega) 

f* 

 (fluct.) 
f* 

 (simp.) 
% diff 
(fluct.) 

% diff 
(simp.) 

0.0 1.00 1.041 4.96 5.75(2) 4.91492(6) 15.9% 0.909% 
0.3 0.94 1.235 9.96 10.73(3) 9.5833(3) 7.73% 3.78% 
0.6 0.96 1.289 12.86 13.38(3) 12.1141(7) 4.04% 5.80% 
1.0 0.96 1.18 13.34 13.74(3) 12.595(1) 3.00% 5.58% 
Table 1.  The numbers in parenthesis indicate the uncertainty in the last digit printed.  The 
last two columns show the percent difference of the fluctuating and simple cell free 
energies with respect to the results of Vega et al. 
 

In accordance with the work of Gay et al. [5], the effect of bond length on the free 
volume distribution was investigated.  Figure 2 shows the distribution for small L*.  Here it 
is clear that the probability of having zero free volume is tending toward zero although 
there is not enough evidence to state that the probability is exactly zero at zero free 
volume.  There is a peak in the distribution at a nonzero free volume.  As the bond length 
is increased, however, the orientation of the dumbbell plays a larger role in determining the 
free volume.  Even at L*=0.10 the probability of having a zero free volume tends to a large 
nonzero value (perhaps even a singularity).  The peak in the distribution occurs at zero free 
volume (figure 3).   
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Figure 2.  Free volume distribution for small L*.  Note that the probability of zero free 
volume tends toward zero. Here * 1.18ρ =  and R=1.00. 
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Figure 3.  Here, the probability distribution peaks as the free volume approaches zero 
(perhaps a singularity).  Again, * 1.18ρ =  and R=1.00. 
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L* *
fv  

0.00 6.20(4) 410−×  
0.01 6.18(4) 410−×  
0.10 3.43(3) 410−×  

0.20 9.53(14) 510−×  
0.30 5.12(13) 510−×  
0.40 3.60(9) 510−×  
0.60 1.56(4) 510−×  
1.00 9.6(2) 710−×  

Table 2.  Average free volume at various bond length and constant * 1.18ρ =  and R=1.00.  
The numbers in parenthesis give an estimate of the uncertainty in the last digit(s) printed. 

 
 In the hard sphere limit of L*, the simple cell outperforms the fluctuating cell 

model; however, the fluctuating cell model may still have utility in free volume 
calculations even for these systems.  For L*=0, the difference between the simple cell and 
fluctuating cell free energies was determined and is plotted in figure 3.  The free energy 
difference is nearly constant.  This is because the fluctuating cell to simple cell free volume 
ratio is nearly independent of density.  In fact, figure 4 shows that the free volume 
distribution is density independent.  The fluctuating cell method could be used to 
determine the free energy if properly calibrated.  When calculating the free energy of grain 
boundaries, this method would be preferable.  Also, since most simulations require 
fluctuation of the system, a snapshot of the equilibrated system could lead to a fairly good 
free energy estimate simply by calculating the free volume. 
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*f∆
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Figure 3.  The difference between the fluctuating and simple cell free energies for the hard 
sphere system.  The fluctuating cell free energy is always larger.  Here, L*=0.0 and R=1.00. 

 



 9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5

a*=1.01
a*=1.03
a*=1.08

*
Cv P

* *
f Cv P v

 
Figure 4.  The hard sphere free volume distribution is independent of density.  Here, *

Cv  is 

the simple cell free volume.  Here, L*=0.0 and R=1.00. 
 
 The results of the 3D fluctuating cell model are analogous to the fluctuating cell 

model applied to 2D homonuclear dumbbells.  Gay et al. describes the same trend in the 
utility of the fluctuating cell model [5].  At zero L* the simple cell model proves more 
accurate than the fluctuating cell.  As the bond length is increased, the fluctuating cell 
model better approximates the free energy.  It was noted that the transition value of L* 

where the fluctuating cell model outperformed the simple cell model was larger in the 
three-dimensional case than in two-dimensions.  Even at L*=0.3, in three-dimensions, the 
simple cell was more accurate.  In addition, the free volume distribution of the three-
dimensional system has similar characteristics to that of the two-dimensional system.  At 
some appreciable L* the distribution switches from peaking at some nonzero free volume to 
peaking at * 0fv = . 

 The simple cell free energy dependence on L* is also interesting.  Near L*=0, in 
both two [5] and three dimensions the free energy as calculated by the simple cell method 
decreases with increasing L*   (Figure 5).  At some small L*, however, the trend is reversed 
as the free energy increases with increasing L*.  This is most likely due to the locking of 
the dumbbell’s rotation as the bond length is increased.  This decreases the orientations 
available and thus the total free volume.  At small rotation, L* plays little role in the free 
volume as the solid is a plastic crystal.  Note that the fluctuating cell model, however, 
gives free energies that are monotonically increasing for all L* values 



 10

6

7

8

9

10

11

12

0 0.1 0.2 0.3 0.4 0.5 0.6

Simple Cell
Fluctuating Cell

*L

*f

 
Figure 5.  Comparison of the free energy as calculated by the fluctuating and simple cell 
models.  * 1.18ρ = , and R=1.00. 

 
One of us (J. C. R.) derived an analytic solution for the free volume of a three-

dimensional system of hard spheres [6] in agreement with an independent analytic solution 
of Sastry, et al. [7].  Shawn C. Gay coded this solution for the free volumes, and these 
results were compared with those found by Monte Carlo integration.  Although the code 
for the analytic method either crashed or produced clearly incorrect results roughly 0.05% 
of the time, it usually agreed with Monte Carlo integration within the estimated 
uncertainty. 
Conclusion: 

 From the free energy calculations via thermodynamic integration on the CP1 
crystal, the simple cell approximates the free energy better only near the hard sphere limit.  
The real benefit of the fluctuating cell model lies in its ability to give thermodynamic 
information about a system from a single configuration.  In addition, there appears to be 
improvement in the free energy calculation over the simple cell for dumbbells with 
appreciable elongation.   
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